BigGameDamian
Well-Known Member
- Joined
- Oct 19, 2012
- Messages
- 33,833
- Likes
- 13,727
- Points
- 113
http://news.yahoo.com/confirmed-newfound-particle-higgs-130317830.html
How would you explain the Higgs to a friend at a bar?
A: In a bar, I'd probably use one of those analogies. The real important thing for me is that fundamental particles are as far as we can tell zero-dimensional particles. They have no radius. You can't think of fundamental particles as being glass marbles. They literally have no extension in space. They can never bump into anything else.
It's all about interactions. It's about them exchanging other particles as forces. With a particle like the electron — what gives the electron mass is really inertia, that's the property that we associate with massive particles. Mass and inertia go together.
So since an electron or a quark has no extension in space, you sort of wonder where did the mass go? Well it's not that the mass resides with the electron or the proton. It's that the mass comes from its interaction with other things. And in this case, it's the Higgs field that gives this point particle — the electron — the appearance of inertia. That is what allows it to act like it's resisting changes in its motion.
Whereas you have other particles like the photon which has no mass, and because of that it can go at the speed of light, whereas a massive particle will never be able to go at light speed.
How would you explain the Higgs to a friend at a bar?
A: In a bar, I'd probably use one of those analogies. The real important thing for me is that fundamental particles are as far as we can tell zero-dimensional particles. They have no radius. You can't think of fundamental particles as being glass marbles. They literally have no extension in space. They can never bump into anything else.
It's all about interactions. It's about them exchanging other particles as forces. With a particle like the electron — what gives the electron mass is really inertia, that's the property that we associate with massive particles. Mass and inertia go together.
So since an electron or a quark has no extension in space, you sort of wonder where did the mass go? Well it's not that the mass resides with the electron or the proton. It's that the mass comes from its interaction with other things. And in this case, it's the Higgs field that gives this point particle — the electron — the appearance of inertia. That is what allows it to act like it's resisting changes in its motion.
Whereas you have other particles like the photon which has no mass, and because of that it can go at the speed of light, whereas a massive particle will never be able to go at light speed.

